
5TC option AUD
Embedded Programming Basics : embedded peripherals

Romain Michon, Tanguy Risset

Labo CITI, INSA de Lyon, Inria, GRAME-CNCM

29 août 2025

5TC option AUD : : 1

Table of Contents

Embedded Peripherals Programming

Interrupt in Embedded Programming

5TC option AUD : Embedded Peripherals Programming : 2

Peripheral programming

• Peripherals are (nowadays) all programmed with memory map

• Each peripheral contains configuration registers
• These registers are mapped to special addresses in the

memory

• Example : LED Blink in Teensy

5TC option AUD : Embedded Peripherals Programming : 3

Most basic peripheral : GPIO

• Teensy 4.0 has 40 physical I/O pad
• Some of them can be used for analog input or PWM output
• Digital I/O pins can be configured :

• as GPIO or for trigerring a peripheral
• GPIO can be configured

▶ As input or output
▶ Pulled up, pulled down, or not
▶ Interrupt enable

5TC option AUD : Embedded Peripherals Programming : 4

Could you write the “blink” example?

• The LED is connected to a teensy GPIO
• Blinking the LED is done using the following code :
// Pin 13 has an LED connected on most Arduino boards.
int led = 13;

void setup() {
pinMode(led, OUTPUT);

}

void loop() {
digitalWrite(led, HIGH);
delay(1000);
digitalWrite(led, LOW);
delay(1000);

}

5TC option AUD : Embedded Peripherals Programming : 5

How to blink the LED on teensy

• Identify IO port connected to LED : teensy schematics (end of
page https://www.pjrc.com/store/teensy40.html)

→ I/O pin number 13
• Configure I/O 13 in output mode : pinMode() function

(see https://www.pjrc.com/teensy/td_digital.html)
• Write 1 or 0 at IO 13 port address : digitalWrite() function

(see also https://www.pjrc.com/teensy/td_digital.html)

const int ledPin = 13;
pinMode(ledPin, OUTPUT);
while (1) {

digitalWrite(ledPin, 1);
delay(100);
digitalWrite(ledPin, 0);
delay(100);

}

5TC option AUD : Embedded Peripherals Programming : 6

https://www.pjrc.com/store/teensy40.html
https://www.pjrc.com/teensy/td_digital.html
https://www.pjrc.com/teensy/td_digital.html

Better with macros...

const int ledPin = LED_BUILTIN;
pinMode(ledPin, OUTPUT);
while (1) {

digitalWrite(ledPin, HIGH);
delay(100);
digitalWrite(ledPin, LOW);
delay(100);

}

in $ARDUINOPATH/hardware/teensy/avr/cores/teensy4/pins_arduino.h

#define LED_BUILTIN (13)

in $ARDUINOPATH/hardware/teensy/avr/cores/core_pins.h

#define HIGH 0x1
#define LOW 0x0

5TC option AUD : Embedded Peripherals Programming : 7

Better with macros...

const int ledPin = LED_BUILTIN;
pinMode(ledPin, OUTPUT);
while (1) {

digitalWrite(ledPin, HIGH);
delay(100);
digitalWrite(ledPin, LOW);
delay(100);

}

in $ARDUINOPATH/hardware/teensy/avr/cores/teensy4/pins_arduino.h

#define LED_BUILTIN (13)

in $ARDUINOPATH/hardware/teensy/avr/cores/core_pins.h

#define HIGH 0x1
#define LOW 0x0

5TC option AUD : Embedded Peripherals Programming : 8

Better with timers....
• delay(100) is called buzy wait
• Blinking leds on timer interrupts free the CPU from buzy

waiting.
void blinkLED() {

//timer call back: blink the led
[...]

}

void setup(void)
{

//set led pin to output direction
pinMode(ledPin, OUTPUT);
// Initialize timer callback (called every 300 milliseconds)
myTimer.begin(blinkLED, 300000);

}

void loop(void) {
//nothing to do here

}
5TC option AUD : Embedded Peripherals Programming : 9

What are “Peripherals”?

• All peripherals (Timers, ADC, USB, ETH, etc.) are dedicated
circuits.

• These circuits can be configured by a set of registers
• Each register has its own address (i.e. address within the

peripheral) specified in peripheral datasheet.
• Two ways of writing these registers :

• Use a serial protocol (I2C, SPI, . . .) to access the registers of
the Peripheral

• Peripherals can send interrupts to the CPU :
• The CPU will execute a particular callback function in order to

perform specific task asked by the peripheral.
• eg : blinkLED() (timer callback). MyDSP.update() (audio

callback)

5TC option AUD : Embedded Peripherals Programming : 10

Table of Contents

Embedded Peripherals Programming

Interrupt in Embedded Programming

5TC option AUD : Interrupt in Embedded Programming : 11

Interrupt mechanism principle
• By default, the program main is executed infinitely, it generally

contains an infinite loop that never ends.
• The processor can receive interrupts at any time (hardware

interrupts).
• An interrupt can be sent by a peripheral of the micro-controller

(timer, radio chip, serial port, etc...), or received from outside
(on a GPIO) like the reset for example.

• It is the programmer who configures the peripherals (for
example the timer) to send an interrupt on certain events

• It is a common naming habit to say that Interrupts arrive on a
port of the micro-controller.

• An interrupt is processed by a dedicated interrupt service
routine (ISR).

• Each interrupt has its own ISR. it is a function written by the
programmer which has some special properties.

5TC option AUD : Interrupt in Embedded Programming : 12

Processing an Interrupt

• Interrupts (i.e. “hardware interrupts”) are essential for the
operation of any computer.

• When an interrupt occurs, the microprocessor saves the
current state of its running program :

• all general registers
• the status register
• the program counter

• It then executes a specific piece of code to process this
interrupt (interrupt handler or ISR)

• when the handler is finished, it restores the state of the
processor and resumes execution of the interrupted program

5TC option AUD : Interrupt in Embedded Programming : 13

Interrupt Service Routine (ISR)

• The call to the interrupt handling routine is not exactly a
function call like the others.

• It must be compiled a little differently, so it is usually identified
by a pragma for the compiler. Example for gcc :
interrupt(PORT1_VECTOR)port1_irq_handler(void)

• an interrupt handler can itself be interrupted or not by another
interrupt (interrupt priority).

• User can write its own interrupt routines in C, the compilers
provide facilities for this.

• On slightly more advanced systems, the ISR is provided by the
programming environment which offers the user to write a
function that will be called during the interruption : callback
mechanism

5TC option AUD : Interrupt in Embedded Programming : 14

Interrupt mecanism

program.exe

Interrupt1

5TC option AUD : Interrupt in Embedded Programming : 15

Interrupt mecanism

program.exe

Interrupt1

ISR1.exe

save return
address

save context
disable interrupts

IS
R

1

enable interrupts

5TC option AUD : Interrupt in Embedded Programming : 15

Interrupt mecanism

program.exe

Interrupt1

ISR1.exe

save return
address

save context
disable interrupts

IS
R

1 Interrupt2

enable interrupts

delayed

5TC option AUD : Interrupt in Embedded Programming : 15

Interrupt mecanism

program.exe

Interrupt1

ISR1.exe

save return
address

save context
disable interrupts

IS
R

1 Interrupt2

enable interrupts

restore context

delayed

save return
address

ISR2.exe

save context
disable interrupts

IS
R

enable interrupts
restore contextrestore return

address

5TC option AUD : Interrupt in Embedded Programming : 15

Interrupt mecanism

program.exe

Interrupt1

ISR1.exe

save return
address

save context
disable interrupts

IS
R

1 Interrupt2

enable interrupts

restore context

delayed

save return
address

ISR2.exe

save context
disable interrupts

IS
R

enable interrupts
restore contextrestore return

address

restore return
address

5TC option AUD : Interrupt in Embedded Programming : 15

Callback mechanism

The Callback mechanism allows to define ISR behaviour is as a
regular function.

Interrupt Callback principle
(Image Source : Reusable Firmware Development book)

5TC option AUD : Interrupt in Embedded Programming : 16

Audio Callback

loop()
Codec

Interrupt1

5TC option AUD : Interrupt in Embedded Programming : 17

Audio Callback

loop()
Codec

Interrupt1

calling callback

Audio ISR

5TC option AUD : Interrupt in Embedded Programming : 17

Audio Callback

loop()
Codec

Interrupt1

calling callback

Audio ISR

5TC option AUD : Interrupt in Embedded Programming : 17

Audio Callback

loop()
Codec

Interrupt1

calling callback

Audio ISR

A
ud

io
IS

R

MyDsp : :update()

MyDsp : :update()

compute outBlocks
from inBlocks

return to ISR

5TC option AUD : Interrupt in Embedded Programming : 17

Audio Callback

loop()
Codec

Interrupt1

calling callback

Audio ISR

A
ud

io
IS

R

MyDsp : :update()

MyDsp : :update()

compute outBlocks
from inBlocks

return to ISR

return
from ISRCodec

Interrupt2

5TC option AUD : Interrupt in Embedded Programming : 17

Audio Callback

loop()
Codec

Interrupt1

calling callback

Audio ISR

A
ud

io
IS

R

MyDsp : :update()

MyDsp : :update()

compute outBlocks
from inBlocks

return to ISR

return
from ISRCodec

Interrupt2

MyDsp : :update()

compute outBlocks
from inBlocks

etc...

5TC option AUD : Interrupt in Embedded Programming : 17

Callback mecanism

• A callback mecanism is used to allow the user to write its own
ISR function

• In primitive systems (bare metal) :
• The compiler uses pragmas to distinguish between regular

function and ISR.
• Each interrupt has a dedicated number corresponding to its

entry in the interrupt vector table
• In more elaborate systems :

• A function pointer mecanism is used to register a user fonction
as callback for a given interrupt

• Examples on the teensy : intervalTimer
• Examples on the teensy : the audio callback (void
MyDsp::update(void)

5TC option AUD : Interrupt in Embedded Programming : 18

Timer example

• Teensy provide the intervalTimer object (https:
//www.pjrc.com/teensy/td_timing_IntervalTimer.html)
dedicated to provide regular interrupts.
// Create an IntervalTimer object
IntervalTimer myTimer;

• At timer initialization :
• Set the frequency of interrupts (e.g. every 150 ms)
• Register the callback function (e.g. blinkLED)

myTimer.begin(blinkLED, 150000)

• callback function (i.e. blinkedLED) must have fixed type : void
blinkedLED(void):

5TC option AUD : Interrupt in Embedded Programming : 19

https://www.pjrc.com/teensy/td_timing_IntervalTimer.html
https://www.pjrc.com/teensy/td_timing_IntervalTimer.html

Hands on

• As explained on course web site, from the teensy_example
• Create a teensy_led example that blinks the led with the
delay() function.

• Create a teensy_timer example that blinks the led with a timer.
• Create a teensy_serial example that blinks the led with a

timer and prints out on UART port every seconds, the number
of blinks occured since the beguinning.

• download the teensy_audio from the embaudio web site, run it
and make it click by adding a delay(10) in the timer callback

5TC option AUD : Interrupt in Embedded Programming : 20

	Embedded Peripherals Programming
	Interrupt in Embedded Programming

