5TC option AUD

Embedded Programming Basics : embedded peripherals

Romain Michon, Tanguy Risset

Labo CITI, INSA de Lyon, Inria, GRAME-CNCM

Ve

h 7 GRAME

INSTITUT RATIONAL 7 CENTRE NATIONAL
‘ DES SCNCEs W DE CREATION
on e INVENTEURS DU MONDE NUMERIQUE MUSICALE, LYON

29 ao(t 2025

5TC option AUD : :

Table of Contents

Embedded Peripherals Programming

Interrupt in Embedded Programming

5TC option AUD : Embedded Peripherals Programming :

Peripheral programming

* Peripherals are (nowadays) all programmed with memory map

+ Each peripheral contains configuration registers
» These registers are mapped to special addresses in the
memory

» Example : LED Blink in Teensy

5TC option AUD : Embedded Peripherals Programming :

Most basic peripheral : GPIO

(RRS TR
S10d [eL3S
lemnopny
aipny eubia

PWM OUT2
PWM LRCLK2
PWM BCLK2
PWM N2

PWM OUTID
PWM OUTIA RX2

BCLKT
LRCLKT

PWM INL T2
PWM OUTIC <
PWM MQSR G5 L SPDIFIN PWM
PWM CTXL MOSI 1l L SIPDIFOUT PWM
PAM

0t .ASUD3]J, 01 SWOI[IM

» Teensy 4.0 has 40 physical I/0 pad

» Some of them can be used for analog input or PWM output
+ Digital I/0O pins can be configured :
» as GPIO or for trigerring a peripheral
* GPIO can be configured
> As input or output
» Pulled up, pulled down, or not
> Interrupt enable

5TC option AUD : Embedded Peripherals Programming :

Could you write the “blink” example ?

» The LED is connected to a teensy GPIO
« Blinking the LED is done using the following code :

// Pin 13 has an LED connected on most Arduino boards.H
int led = 13;

void setup() {
pinMode(led, OUTPUT);
}

void loop() {
digitalWrite(led, HIGH);
delay(1000);
digitalWrite(led, LOW);
delay(1000) ;

5TC option AUD : Embedded Peripherals Programming :

How to blink the LED on teensy

+ Identify 10 port connected to LED : teensy schematics (end of
page https://www.pjrc.com/store/teensy40.html)

— 1/O pin number 13

+ Configure 1/0 13 in output mode : pinMode () function
(see https://www.pjrc.com/teensy/td_digital.html)

» Write 1 or 0 at 1O 13 port address : digitalWrite() function
(see also https://www.pjrc.com/teensy/td_digital.html)

const int ledPin = 13;
pinMode (ledPin, OUTPUT);
while (1) {
digitalWrite(ledPin, 1);
delay(100) ;
digitalWrite(ledPin, 0);
delay(100) ;

}

5TC option AUD : Embedded Peripherals Programming :

https://www.pjrc.com/store/teensy40.html
https://www.pjrc.com/teensy/td_digital.html
https://www.pjrc.com/teensy/td_digital.html

Better with macros...

const int ledPin = LED_BUILTIN;

pinMode (1ledPin, OUTPUT);

while (1) {
digitalWrite(ledPin, HIGH);
delay(100);
digitalWrite(ledPin, LOW);
delay(100);

}

in $ARDUINOPATH/hardware/teensy/avr/cores/teensy4/pins_arduino.h
#define LED_BUILTIN (13)

in $ARDUINOPATH/hardware/teensy/avr/cores/core_pins.h

#define HIGH Ox1
#define LOW 0xO0

5TC option AUD : Embedded Peripherals Programming :

Better with macros...

const int ledPin = LED_BUILTIN;

pinMode (1ledPin, OUTPUT);

while (1) {
digitalWrite(ledPin, HIGH);
delay(100);
digitalWrite(ledPin, LOW);
delay(100);

}

in $ARDUINOPATH/hardware/teensy/avr/cores/teensy4/pins_arduino.h
#define LED_BUILTIN (13)

in $ARDUINOPATH/hardware/teensy/avr/cores/core_pins.h

#define HIGH Ox1
#define LOW 0xO0

5TC option AUD : Embedded Peripherals Programming :

Better with timers....
* delay(100) is called buzy wait
+ Blinking leds on timer interrupts free the CPU from buzy
waiting.
void blinkLED() {
//timer call back: blink the led

[...]
}

void setup(void)
{
//set led pin to output direction
pinMode (1ledPin, OUTPUT);
// Initialize timer callback (called every 300 milliseconds)fi
myTimer.begin(blinkLED, 300000);
}

void loop(void) {
//nothing to do here
}
5TC option AUD : Embedded Peripherals Programming : 9

What are “Peripherals”?

« All peripherals (Timers, ADC, USB, ETH, etc.) are dedicated
circuits.

» These circuits can be configured by a set of registers
» Each register has its own address (i.e. address within the
peripheral) specified in peripheral datasheet.
» Two ways of writing these registers :
+ Use a serial protocol (I12C, SPI, ...) to access the registers of
the Peripheral
* Peripherals can send interrupts to the CPU :
» The CPU will execute a particular callback function in order to
perform specific task asked by the peripheral.
* eg :blinkLED() (timer callback). MyDSP.update () (audio
callback)

5TC option AUD : Embedded Peripherals Programming :

10

Table of Contents

Embedded Peripherals Programming

Interrupt in Embedded Programming

5TC option AUD : Interrupt in Embedded Programming :

11

Interrupt mechanism principle

* By default, the program main is executed infinitely, it generally
contains an infinite loop that never ends.

» The processor can receive interrupts at any time (hardware
interrupts).

* An interrupt can be sent by a peripheral of the micro-controller
(timer, radio chip, serial port, etc...), or received from outside
(on a GPIO) like the reset for example.

« It is the programmer who configures the peripherals (for
example the timer) to send an interrupt on certain events

* It is a common naming habit to say that Interrupts arrive on a
port of the micro-controller.

» An interrupt is processed by a dedicated interrupt service
routine (ISR).

» Each interrupt has its own ISR. it is a function written by the
programmer which has some special properties.

5TC option AUD : Interrupt in Embedded Programming : 12

Processing an Interrupt

* Interrupts (i.e. “hardware interrupts”) are essential for the
operation of any computer.

* When an interrupt occurs, the microprocessor saves the
current state of its running program :

« all general registers
« the status register
« the program counter

* It then executes a specific piece of code to process this
interrupt (interrupt handler or ISR)

¢ when the handler is finished, it restores the state of the
processor and resumes execution of the interrupted program

5TC option AUD : Interrupt in Embedded Programming :

13

Interrupt Service Routine (ISR)

» The call to the interrupt handling routine is not exactly a
function call like the others.

* It must be compiled a little differently, so it is usually identified
by a pragma for the compiler. Example for gcc :
interrupt (PORT1_VECTOR)portl_irq_handler(void)

* an interrupt handler can itself be interrupted or not by another
interrupt (interrupt priority).

+ User can write its own interrupt routines in C, the compilers
provide facilities for this.

+ On slightly more advanced systems, the ISR is provided by the
programming environment which offers the user to write a
function that will be called during the interruption : callback
mechanism

5TC option AUD : Interrupt in Embedded Programming : 14

Interrupt mecanism

program.exe

5TC option AUD : Interrupt in Embedded Programming :

15

Interrupt mecanism

program.exe

nable interrupts

5TC option AUD : Interrupt in Embedded Programming :

15

Interrupt mecanism

program.exe

Interrupt2

jﬂelayed

nable interrupts

5TC option AUD : Interrupt in Embedded Programming :

15

Interrupt mecanism

| ISR1.exe | | ISR2.exe |

program.exe

Interrupt2

j delayed
save return
—_—

address

nable interrupts

restore context save context

disable interrupts

enable interrupts
restore return restore context

address

5TC option AUD : Interrupt in Embedded Programming : 15

Interrupt mecanism

| ISR1.exe | | ISR2.exe |

program.exe

Interrupt2
delayed

nable interrupts save return

address save context
disable interrupts

enable interrupts
restore return restore context

address

5TC option AUD : Interrupt in Embedded Programming :

15

Callback mechanism

The Callback mechanism allows to define ISR behaviour is as a
regular function.

Application

[Main [Callback

Driver Invoke

Library Callback
Kernel

Callback_Register

I Signal Handler l

Interrupt Callback principle
(Image Source : Reusable Firmware Development book)

5TC option AUD : Interrupt in Embedded Programming :

Audio Callback

Cogds129P0

Interrupt1 §
e —

5TC option AUD : Interrupt in Embedded Programming :

Audio Callback

soul 10090

Interrupt1 g

calling callback

5TC option AUD : Interrupt in Embedded Programming :

Audio Callback

soul 10090

Interrupt1 g

calling callback

5TC option AUD : Interrupt in Embedded Programming :

Audio Callback

Code
Interrupt1

loop()

| MyDsp : :update() |

5TC option AUD :

d ISR

Audi

calling callbacké MyDsp : :update()
B ———
compute outBlocks

from inBlocks

to ISR

Interrupt in Embedded Programming :

17

Audio Callback

Codde loop() Audio ISR | |MyDsp : :update()

Interrupt1 g

d ISR

Audi

calling callback% MyDsp : :update()

_ 5

compute outBlocks
from inBlocks

to ISR

return
Codec from ISR
Interrupt2

5TC option AUD : Interrupt in Embedded Programming :

17

Audio Callback

Code

Interrupt1

loop() ‘ MyDsp : :update() ‘

q ISR

Codec
Interrupt2

Audi

calling callbacké MyDsp : :update()
_

compute outBlocks
from inBlocks

to ISR

return

g from ISR

5TC option AUD :

é MyDsp : :update()
—_—

compute outBlocks
from inBlocks
etc

Interrupt in Embedded Programming :

17

Callback mecanism

» A callback mecanism is used to allow the user to write its own
ISR function

* In primitive systems (bare metal) :

» The compiler uses pragmas to distinguish between regular
function and ISR.

« Each interrupt has a dedicated number corresponding to its
entry in the interrupt vector table

* In more elaborate systems :

+ A function pointer mecanism is used to register a user fonction
as callback for a given interrupt

» Examples on the teensy : intervalTimer

» Examples on the teensy : the audio callback (void
MyDsp: :update(void)

5TC option AUD : Interrupt in Embedded Programming :

18

Timer example

* Teensy provide the intervalTimer object (https:
//www.pjrc.com/teensy/td_timing_IntervalTimer.html)
dedicated to provide regular interrupts.

// Create an IntervalTimer object
IntervalTimer myTimer;

+ At timer initialization :

+ Set the frequency of interrupts (e.g. every 150 ms)
* Register the callback function (e.g. b1inkLED)
myTimer.begin(blinkLED, 150000)

« callback function (i.e. blinkedLED) must have fixed type : void
blinkedLED(void) :

5TC option AUD : Interrupt in Embedded Programming :

19

https://www.pjrc.com/teensy/td_timing_IntervalTimer.html
https://www.pjrc.com/teensy/td_timing_IntervalTimer.html

Hands on

* As explained on course web site, from the teensy_example

» Create a teensy_led example that blinks the led with the
delay() function.

» Create a teensy_timer example that blinks the led with a timer.

» Create a teensy_serial example that blinks the led with a
timer and prints out on UART port every seconds, the number
of blinks occured since the beguinning.

» download the teensy_audio from the embaudio web site, run it
and make it click by adding a delay (10) in the timer callback

5TC option AUD : Interrupt in Embedded Programming : 20

	Embedded Peripherals Programming
	Interrupt in Embedded Programming

